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Abstract—Non-conforming discretizations of the surfaces involved in the contact problem are
sometimes required, due to the geometry and/or the load. A strong application of the contact
conditions directly relating variables (displacements and tractions) of the nodes of the discre-
tizations, a general approach called by the authors node-te-point contact scheme, may lead to
unsatisfactory results. In this paper, a weak application of the contact conditions, by means of the
principle of virtual work, is developed for boundary integral equations. The formulation is presented
for two-dimensional problems without or with friction, using the Coutomb model. The modelization
is made using the Boundary Element Method and the problem is solved with an incremental
procedure based on a displacement scaling approach. The solution scheme proposed is applicable
to any contact problem (with small or large displacements) and is validated in this paper by applying
it to receding, conforming and advancing contact problems, the jumps in the contact stresses that
appeared in node-to-point contact schemes, not having been found in the problems tested. © 1998
Elsevier Science Ltd. All rights reserved.

1. INTRODUCTION

Knowledge of the contact problem started with the studies of Hertz (1896) in 1882, who
determined the distribution of pressures throughout the contact zone that appear when two
bodies with curved surfaces are pressed against each other. Many problems, although
usually involving simple geometries with infinite dimensions and frictionless character, have
been analytically solved since then. Many of these problems can be found in Gladwell
(1980) and Johnson (1985).

Complicated geometries or loads require the use of numerical methods. The references
to Chan and Tuba (1971), Fredriksson (1976), Okamoto and Nakazawa (1979), Oden and
Pires (1984), Bathe and Chaudhary (1985) and Klarbring and Bjérkman (1992) are, among
many others, representative of those using the Finite Element Method (FEM) as numerical
technique.

With reference to the Boundary Element Method (BEM), the earliest contributions
were due to Andersson et al. (1980, 1982) and Paris and Garrido (1985) who later analysed
different aspects of the problem (Paris and Garrido, 1988, 1989 ; Garrido et al., 1991) and
extended the formulation to the three-dimensional case (Paris et al., 1994 ; Garrido et al.,
1991; Foces et al., 1993). Other approaches were presented by Takahashi and Brebbia
(1988) using a flexibility approach and Man et al. (1992) using a load scaling procedure.

All these algorithms based on BEM have in common the requirement of identical
discretizations of the two surfaces involved in the contact, with elements candidates for
contact of the same length, so that the contact conditions are applied between corresponding
nodes that originally (conforming or receding problems) or during the application of the
load (advancing problems) are assumed to occupy a common position.

There are situations where it would be advisable, even necessary, to have algorithms
allowing different discretizations of the two surfaces involved in the contact problem. One
of these situations is clearly the case of assumption of rigid body for one of the solids
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involved in the problem (e.g. the case of contact between some fibres and matrices in
composite materials). Another situation would be the case of contact between surfaces of
different curvatures (thus avoiding the tedious work of discretizing the two surfaces in an
identical manner). A third case, not as obvious but probably of greater interest, would be
the case of appearance of moderate relative displacements, in such a way that even original
conforming discretizations may require during the application of the load the use of a non-
conforming approach to avoid jumps of the results originated by the conforming character
of the aforementioned approaches. A fourth situation would be the case of quasistatic
analysis of dynamics problems, avoiding the need for a remeshing procedure for each
particular configuration considered.

In the above mentioned works of Bathe and Chaudhary (1985) (2-D and axisymmetric)
and Klarbring and Bjérkman (1992) (3-D) there are, using Finite Elements, algorithms to
deal with non-conforming discretizations.

Blazquez et al. (1992), Paris et al. (1995), Olukoko et al. (1993) and Huesmann
and Kuhn (1994) presented approaches based on BEM to deal with non-conforming
discretizations. In these three approaches there is a common philosophy of strong appli-
cation of contact conditions: displacements and tractions of the nodes of the contact
zone are related in some way in accordance with a node-to-point contact scheme. Thus,
equilibrium and compatibility relations are directly forced between the nodes of one body
and the corresponding contacting points (not necessarily nodes) of the other body.

Blazquez et al. (1997) compared all these existing proposals based on this node-to-
point approach, finding no serious differences among them. To obtain good results they
showed that displacements must be better represented than tractions, even in the presence
of singular stresses. Nevertheless, the common problem with these approaches is that some
jumps in the tractions along the contact zone may take place in some cases when, as a result
of the discretization performed, there is a poor definition of the displacements at the nodes
of the body that controls the stresses, the nodes being forced to occupy positions different
from those they would naturally tend to occupy. This problem is also treated in detail in
Blazquez and Paris (1997), with some advice on how to avoid the problem.

It seems, speaking in general terms, that a node-to-point contact scheme may be too
strict to force contact conditions between two non-conforming discretizations. In this paper
a different approach based on a weak application of the contact conditions, by means of
the application of the Principle of Virtual Work, is going to be followed. A similar scheme
is followed by Schnack (1987) in coupling Boundary and Finite Element Methods.

First of all, a brief review of the contact problem and the Boundary Element Method
is given in Sections 2 and 3, respectively. The description of the weak application of contact
conditions is made in Section 4. The algorithm of solution, which is not substantially altered
by the manner of application of the contact conditions, is described in Section 5. Finally,
the classical problems of receding, conforming and advancing contact problems are con-
sidered in Section 6 to check the disappearance of the jumps that arose in the node-to-point
contact schemes. The problems considered in this paper are restricted to those able to be
modelled two-dimensionally.

2. THE CONTACT PROBLEM

Let us assume, Fig. 1, two bodies 4 and B, occupying the domains D* and D® with
boundaries 0D and 0D®, which interact between them through a common contact zone
0D# = 0D® = 8D,. The loads, which are assumed to depend on a parameter A, are given
by the tractions and displacements prescribed along the boundaries ¢DF, D and éD¥,
respectively, 0DX+0DX+0DK = 0DF = DX —3dDX, K = A4, B. Thus, the boundary con-
ditions of the problem along dDf are expressed as:

uk = g&(%) alongdD¥X; i=1,2; K=A4,B
t“ = %) alongdD¥; i=1,2;, K=A4,B
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Fig. 1. The contact problem.

Fig. 2. The contact coordinate system.
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Fig. 3. Graphical representation of Coulomb friction law.
uf =af(1), £ =152 alongéDk, ij=12; i#j; K=A4,B (1

Contact conditions are established in a common coordinate system, Fig. 2. At each
point M of the contact zone, direction 1 is taken as the average of the two outward normals
to the boundaries, direction 2 being perpendicular to direction 1 and anti-clockwise.

Coulomb friction law, represented in Fig. 3, has been assumed in this work. A point
M of the contact zone whose stress state is represented by a situation such as that denoted
by P is in adhesion, not admitting relative tangential displacements. A point M of the
contact zone whose stress state is represented by a situation such as that denoted by Q
admits relative tangential displacements. Stress states like that represented by R are not
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admissible in the Coulomb model. Thus, the contact zone is divided into two subzones:
subzone of adhesion dD7, = D2 = dD,, and sliding subzone oD%, = 0D2, = 0D,,.

The contact conditions are classified in three groups: equilibrium, compatibility of
normal displacements and those derived from the friction law considered. These conditions,
in the coordinate system defined by Fig. 2, are
e Equilibrium:

H(M) = (M), i=1.2 @

e Compatibility of normal displacements :

ui (M) +ui(M) =0 3

o Friction law :

MeaD,, = ud (M) +ul(M) = 0
MedD, = 5(M) = +ui¥(M), k=A,B @

The limit of application of these conditions is given by :
o Contact pressures:

(M) <0, K=A4,B (%)

e Maximum admissible tangential stresses :

|| < plif (M), K=A4,B (6)

e Dissipative character of friction:
(M (M)+ui(M)) <0, K=A4.B8 (N

3. THE BOUNDARY ELEMENT METHOD

In absence of body forces, boundary integral formulation of elastic bodies can be
expressed in terms of Somigliana Identity, Paris and Cafias (1997), which with reference to
a point x of the boundary of body K (K = A, B) reads:

CH(x) Auf(x)+ J

aDk

TY%(x,») Auf(y) ds(y) = f

Wi(x, y) Atf(y) ds(y) ®
apk
where K= 4,B; x, yeéD*; ¥, and T'f’, are, respectively, displacements and tractions
associated to Kelvin fundamental solution. The term C¥ is usually known as the coefficient
matrix of the free term, its value depending on the local geometry at point x where the
integral equation is applied.

The Identity has been written in incremental form to deal with the non linearities that
may arise during the application of the load. This equation can be applied to any point of
the boundaries of the bodies 4 and B, usually the nodes of the discretization, in such a way
that these equations, together with the boundary conditions of the contact-free zone [eqn
(1)] and the contact conditions [equations (2)—(4) with the limitations (5)-(7)], allow the
problem to be solved.

The Boundary Element Method consists of the replacement of the boundary éD by a
set of elements along which displacements and tractions vary in a certain way. In this paper
all the results presented are obtained with straight linear elements allowing discontinuities
of the stress vector at the junction of the elements, Paris and Cafias (1997). Using quadratic
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elements, a contact procedure designed node by node may lead, when the central node of
the element contacts, to overlapping in the contacted zone of the element and tractions in
the non contacted zone of the element, Andersson and Allan-Persson (1983). On the other
hand, a contact procedure conceived element by element would imply considering a non
linear step as a linear one, leading to an oscillatory solution in the contact pressures, Man
et al. (1993). To avoid these problems, particular decisions should be taken in order to use
quadratic elements, whereas no special precautions are required using linear elements, the
accuracy being satisfactory.

Displacements and tractions along an element k of body K, dD§, are expressed as a
function of the nodal values by means of the corresponding shape functions:

AuPE(E) = N¥¥(&) Au* ©)

AEPE(E) = NFK(£) AR (10)

where ¢ is a natural coordinate defined along dD¥, Au?4(¢) and At™4(¢) are, respectively,
the increments of displacements and tractions vectors at the point of the element of
coordinate &, N*%(&) is a matrix containing the shape functions, and Au*¥ and At*¥ are
vectors that include the displacements and tractions of the nodes of the element & of solid
K.

Performing the discretization procedure in eqn (8) and applying it to the nodes of the
discretization (taken as usual as collocation points) of the boundaries of the two bodies
leads to the following system of equations, where for the sake of simplicity mixed conditions
have not been explicitly represented :

Auf AF¥
[Hf Hf HA8) = [GF Gf G{liAtf (an
Auf A%

These H are matrices whose coefficients represent integrations of 7% along the elements
of body K plus the value of the free term, C%, when appropriate. Correspondingly these G
are matrices whose coefficients represent integrations of ¥;,. The subindexes ¢, u, ¢ make
reference to the zone of the boundary along which the integration is being performed. In
system (11), boundary conditions (1) have already been imposed along 6DF.

The casuistry of application of the direct boundary conditions expressed by (1) is
explained in detail in Paris and Cafias (1997). A new way to impose contact conditions (2)—
(4) on the discretized bodies will be described in the next Section.

4. WEAK IMPOSITION OF THE CONTACT CONDITIONS

Following the basic idea of imposition of the contact conditions with non-conforming
discretizations, described by Paris ez al. (1995), compatibility equations will be imposed on
one of the bodies, which will be called body A, whereas equilibrium equations will be
imposed on the other body, called body B in what follows. In this way, displacements of
body A will be a function of those of body B (i.e. the displacements of the points of the
contact zone are defined by the displacements of the nodes of B), and the tractions of body
B will be a function of those of body A (i.e. the tractions of the points of the contact zone
are defined by the tractions of the nodes of 4). Friction law will be imposed on the variables
associated to the nodes of body 4, which define contact stresses.

4.1. Compatibility
Two fields of displacements (12) and (13) will be defined, in order to apply compatibility
conditions, on body 4.
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Aui(x), VxeD" = displacement solution of body A (12)
; Aul(y) along 8D

Ai(y), VyedD?' = { g ol (13)
—Auf(y)+6.(y) alongoD?

Notice that the displacement field Au;'(x), which corresponds to the solution of the
problem, is defined at all points of body A, and will have associated a compatible strain
field Aef(x), whereas Au*(y) is only defined at points of the boundary. Note that the
physical meaning of the variable J,(y) that appears in (13) is the value of how close or far
the boundaries get at point y, whereas d,( ), also in (13), represents the relative displacement
between the two surfaces at point y, both values with reference to an increment of external
load.

To establish compatibility between these two fields of displacements, the Principle of
Virtual Forces (i.e. the Principle of Virtual Work where the stress field is a virtual field in
equilibrium and the displacement and strain fields correspond to the actual problem) is
applied. This principle, for the case of absence of body forces, takes the expression :

f o’ (x) Agf(x) dv = j 1 () Au () ds (14)

ept

an expression that must be satisfied for every virtual field of stresses a7 and £ in

equilibrium.
Transforming the first integral :

J ol (x) Aef(x)dv = J o (x) Auf(x) dv
DA

DA

= 4[ (o (x) Auf(x)) ;dv —j o (x) Auf(x) dv

DA

- J o () Aut () ds
&p”
=J 1 (y) Au(y) ds (15)

where relation e—u, the divergence theorem, internal equilibrium equations (with zero body
forces) and the Cauchy lemma have been successively applied. Substituting (15) into (14)
it follows that:

f 2 ()(Auf (1)~ Aui (p)) ds = 0 (16)

Due to the fact that the fields of displacements Aw;' and Au{”, defined in (12) and (13),
respectively, only differ along the contact zone, expression (16) leads to:

J £ () (Au'(y) +Auf () —6,(¥)) ds = 0 (17
epA

an expression that must be fulfilled for any field 7 in equilibrium.
Expressing equation (17) in an approximate form, according to the discretization
performed :
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Element & of body A

segment 1 segment2  segment 3

\é\ ,rp | )r/;,l: Body A

,D/ o ~ BodyB

*same length as-segment 1
Fig. 4. Calculation scheme of integrals that appear in compatibility conditions.

NCA

Y f (NFAE49)T(NF Aué 4 N? Au? —N*6¢) ds = 0 (18)
6DkA

k

where NCA is the number of elements of the body 4 which belong to the potential contact
zone and the superindex k& makes reference to the element of NCA along which the
integration is performed. Note that the shape function matrix N® has been kept complete
due to the fact that an element of 4 will not necessarily contact with a single element of B
and vice versa.

Due to the fact that eqn (18) has to be fulfilled for any field % in equilibrium, the
compatibility equation in discretized form takes the expression :

NCA4 NCA NCA
Y J (N*)TN* ds Auf* + ) J (N*)TN® ds Auf — ) J (NH)TN dssf = 0
ap«4 k  Japa apka

k

(19)

the dependency with respect to the integration variable having been omitted for the sake
of simplicity.

The computation of the integrals that multiply to Auf* and & is easy, due to the fact
that they are integrals of products of shape functions, their values only being dependent on
the length of the element k. With reference to those that multiply to Au?, they will depend
on the relative positions in which the nodes of B are being situated along the element k of
A. Thus, a partition of the integral in segments defined by the positions of these nodes of
B is required. These positions have been computationally determined by a mapping of the
nodes of B on the elements of 4, having taken a common curvilinear coordinate. Depending
on the approach followed, this coordinate definition is maintained constant throughout the
incremental process in a small displacement approach, or is updated at the beginning of
each increment of load in a moderate or large displacement approach, where an updating
of the geometry is required. This is illustrated in Fig. 4. An easy and direct way to evaluate
the integrals along these segments is to use a Gauss-Legendre quadrature with two points
along each of the segments, thus obtaining the exact value, according to the discretization
performed, with linear elements, of the integral that appears in (19).

4.2. Equilibrium
Two stress states will be defined for the body B, analogously to what has been done
for the displacements in Section 4.1 devoted to compatibility equations. Thus:
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Atf(x,n) = Acf(x)n;, VxeD? = stress solution of body B (20

At?(y,n®) along Df
A2(y), VyedD®= { (21)
At (y,n?) along oDE

where n is an arbitrary unit vector and n® is the outward unit normal to the boundary of
body K at point y.

Notice again that A’ (x, n) is defined on the whole of body B, whereas Ar?2(y) is only
defined along the boundary of body B.

Applying now the Principle of Virtual Displacements (i.e. the Principle of Virtual
Work where the displacement and strain fields are virtual compatible ficlds and the stress
field correspond to the actual problem), it must be fulfilled, in order to guarantee the
equilibrium between these two stress fields, that :

J Acl(x)ed (x)dv = J AB(MuP?(y) ds 22

éD

for any field of displacements 4 and compatible strains e5*.
Performing similar operations to those indicated for the compatibility equation in
Section 4.1, the left hand side of eqn (22) can be transformed in the following way :

J Acl(x)el (x)dv = |  Acl(x)ul (x)dv
DB JpE
= | (Aef(x)u?(x)),do— J Acl(x)ul (x) dv
Jp? D?
= Aai(y)ul’ (y)n} ds
Jepé
= AF()u (y) ds (23)
Jap?®
which substituted into (22) leads to:
J (A2 (y)— A (¥)u (y)ds = 0 (24)
oDE

where the definition of A7¢®(y) given by (21) has been taken into account.

The equilibrium at all points y belonging to the contact zone, i.e. Arf'(y) = Arf(y), is
guaranteed by the fulfilment of (24) for any fields u™¥ (y).

By a similar process to that followed in the obtention of (19) from (17), the following
system of equations is obtained from (24) :

NCB NCB
3 f (NFB)TNKE ds AtE — J (NKEYTNA ds At = 0 (25)
aDkB aDkB

k k

The integrals that appear in these equations are similar to those that appeared in the
compatibility equations and they are computed in a similar way.

It should be noticed that this manner of imposing equilibrium equations ensures the
global equilibrium of forces and moments of the problem. The force equilibrium can be
proved using in (24) [or in discretized form (25)] a constant displacement field #2%(y),
which can be correctly described by linear elements. The moment equilibrium can be proved
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suitably using in (24) [or (25)] the components of the radius vector as displacement field
u¥ (y), which can also be described correctly by linear elements. Obviously, the finer the
discretization used for «/¥(y) is, the more similar the point values of tractions of the two
bodies obtained from the system of equations (25) will be.

Similar comments to these for equilibrium equation (24), or in discretized form (25),
may be applied to compatibility equation (17) or (19).

4.3, Friction condition

As has previously been stated, the Coulomb model will be used to describe friction
effects.

o If during the application of an increment of load a pair of points in contact are in
adhesion, the relative displacements between the two points is null and the condition to
be imposed is:

02(y) =0 (26)

The limit of application of this condition is established by the maximum value allowable
for the tangential component of the stress:

[ < plef ) @7

o If during the application of an increment of load a pair of points in contact are sliding,
the condition that must be imposed is the proportionality between the normal and
tangential components of the stresses :

5(y) = £uti(y) = A3 () = £pAri(y) (28)

The sign + or — is selected depending on the straight line of sliding on which the stress
vector is situated in Fig. 3. The limit of application of these conditions is fixed by the
dissipative character of friction :

1(1d,(y) <0 29

5. THE ALGORITHM OF SOLUTION

To take into consideration the presence of friction, an incremental algorithm of solu-
tion must be employed. Then, given a set of compatible contact conditions at the beginning
of an increment of load, these conditions are maintained constant during the application
of the increment, the obtaining of the solution of the problem thus being guaranteed. The
limit of application of these boundary conditions will produce the amount of load applicable
at each increment, Paris and Garrido (1985, 1989). The detection of a compatible set of
initial contact conditions for each increment (in particular the first) may require the
application of a trial and error procedure.

There are two approaches for the generation of incremental algorithms : a displacement
scaling approach, Paris and Garrido (1989) and a load scaling approach Man et al. (1992).
Paris and Blazquez (1994) discussed the features of these two approaches, showing that
they lead to the same results and that the displacement scaling approach involves less
computational effort, for which reason it will be used in this paper and is briefly described
in what follows.

Let us assume that after a certain application of load the i-th increment starts with a
certain set of contact conditions. The system of equations to be solved in this increment of
load is constituted by :

o The set of integral equations corresponding to the two bodies involved in the contact,
eqn (11).
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e Compatibility equations corresponding to the potential contact zone, applied to one of
the bodies, called body 4, eqn (19).

¢ Equilibrium equations corresponding to the potential contact zone, applied to the other
body, called body B, eqn (25).

o The condition of free stress surface must be imposed on all the nodes n that belong to the
potential contact zone of body 4 but are not in contact :

Ari(n) = Ati(n) =0 30)

e If these nodes of body A are in contact, the condition:
o(n)=0 3D
must be applied together with eqn (26) or (28) depending on whether the node is in

adhesion or sliding respectively.

The remaining load is applied (in fact any value can be applied because what is
interesting to detect is the evolution of the solution with the load), and once the system has
been solved, all four possible limits of application of the contact conditions are checked,
thus detecting the fraction of load 4; (0 < 4, < 1,j=1...4) for which the end of linear
behaviour for each type of condition is reached. The maximum admissible increment of
load that can be applied is defined by the value 4 = min(4)), these /4, being associated to the
following situations :

(1) Reduction of the contact zone, originated by the appearance of tractions at some node,
n, of body A4:

(), +Ari(n) >0 (32)

The correct value of 4, is calculated identifying the final value of the normal stress in
(32) with zero.

)
Ari(n)

Hn), =i+ A4 A () =0=> 24, = — (33)

The node will be removed, after the application of this increment of load, from 0D to
dD . The situations described here can obviously arise at several nodes, the value of 4,
defined by (33) being the minimum of all possible.

(2) When there are nodes of A that trespass the boundary of body B, this means an increase
in the size of the contact zone. The fraction of load to be applied, 4, is calculated as
that which collocates the trespassing node on the trespassed element of body B. Figure
5 illustrates, more clearly than a formula, Paris ez a/. (1995), the calculation of 1,,
which again must be the minimum of all possible.

After the application of the increment of load the node will pass from éD; to dD.

nA <. A g 7
.\\'YQJ a2

~
~ ~ ~
Y B T
¥ 3 ;
A J W 43
ky ky ky ky

Fig. 5. Load factor for an increasing contact zone.

~
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(3) When the dissipative character of the friction (29), is violated in a node that is sliding,
the fraction of load is null, 4; = 0, the node being changed from 6D, to 6D

(4) When in a node in adhesion the tangential stress passes the limit given by the Coulomb
friction law,

113 (n)iy +AB (M| > plti(n), ) + At ()] (34)

the fraction of load to be applied is:

de= — —t5(n),_1 £ puti(n),_, 59
— A3 (n) £ pAri(n)

increment of load the node will be passed from dD2, to éD 4,

The signs + correspond to the two sliding lines, Fig. 2. After the application of the

After an increment of load the geometry (and consequently the integration constants)
may be updated, allowing the consideration of situations different from those covered by
the small displacement theory.

6. RESULTS

Three classical problems belonging to the receding, conforming and advancing contact
cases will be studied. All of them consist in the compression of a certain body against a
rectangular foundation, the geometry of the body giving the different contact nature to the
problem. These problems coincide with those analysed by other authors with different
approaches, which facilitates comparison between them, this being of particular importance
for verifying the improvements in the new formulation presented here. Due to the presence
of symmetry of geometry and loads, only half of the problems will be discretized, an implicit
scheme, Paris and Caifias (1997), being followed.

6.1. Compression of a layer

The complete problem and the one which will be analysed here, due to its symmetry,
are shown, together with the properties of the layer and foundation, in Fig. 6.

The nature of the problem (combination of geometry and load) situates it in the
receding contact problem class, the final size of the contact zone, independent in this case
of the amount of load applied, being smaller than the initial. The problem, once the correct

E P =5 N/mm
= FA = 4000 N/mm?2
L W =035
= EB = 4000 N/mm?
[q\]
v =035
. —>
X

l, 200mm |, '

Fig. 6. Compression of a layer, geometry and properties.
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Discretization with 15 elements
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Discretization with 12 elements
Fig. 7. Discretizations used along the initial contact zone for layer and foundation.
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Fig. 8. Contact pressures for the frictionless case, u = 0.

size and partition of the contact zone have been detected by means of a trial and error
procedure, is then solved in one increment of load, the finding of contact stresses presenting
a smooth evolution along the contact zone being expected.

The two discretizations shown in Fig. 7, one having 12 and the other 15 elements along
the potential (in this case the initial) contact zone, have been combined. Notice that they
are two strongly non-conforming discretizations, particularly in what will be the final
contact zone.

Figure 8 shows the distribution of contact stresses for the frictionless case for three
combinations of discretizations. In all cases the layer has been taken as body 4 and the
foundation as body B, the first number being associated to body 4. This means that one
conforming case is analysed (15-15), another where the body that controls the stresses is
more finely discretized (15-12) and finally one case where the body that controls the
displacements is more finely discretized (12-15).

It can be observed from Fig. 8 that whereas the case in which the body that controls
the displacements is more finely discretized (case 12-15) presents similar results to the
conforming cases (case 15-15), taken as reference, serious discrepancies with respect to
both of them appear when the body that controls the stresses is better discretized (case 15—
12), a clear jump in the contact pressure appearing in this last case. The origin of this jump
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Fig. 9. Deformed configuration for the layer and the foundation for the frictionless case.

is qualitatively the same as the authors have already pointed to in previous papers employing
non-conforming discretizations although based on a different philosophy of application of
the contact conditions Paris et al. (1995), Blazquez et al. (1997). This is clearly explained
inspecting the deformed configurations of the three cases, which are represented in Fig. 9.

The jumps in the contact stresses appear at nodes of body 4 which are forced, due to
the discretization performed in body B, to be placed far from the natural position they
ought to occupy in accordance with the discretization performed in body 4. These jumps,
similar to those obtained with a node-to-point approach, Blazquez et al. (1997), thus appear
due to the over/under compression originated at a node to separate it from its natural
position. This never happens when the body that controls the displacements is discretized
more finely than the one that controls the stresses, a fact that prevents the appearance of
jumps.

Although the previous discussion has referred to variables of the contact zone, the
different discretization schemes affect all variables of the problem. Thus, in the example
under consideration here the difference in the value of the gap at the extreme of the layer
is 12% between the conforming case and the 15-12 case, this value being reduced to 1.3%
in the 12-15 case.

The results associated to the case with presence of friction are shown in Fig. 10. The
meshes, in order to have a more precise definition of the adhesion and sliding contact zone,
have been refined (15 passes to 21 and 12 passes to 14), although maintaining their non
relative conformity. For the reasons given above, only the conforming cases and the case
where the body that controls the displacement is better discretized are considered, both
presenting a similar behaviour.

6.2. Compression of a rectangular punch

The complete problem and the one which will be analysed here, due to its symmetry,
are shown, together with the properties of the punch and the foundation, in Fig. 11. The
nature of the problem (combination of geometry and load) makes it belong to the con-
forming contact problem class, the final size of the contact zone, independently of the
amount of load applied, being identical to the initial. The problem, once the correct partition
of the contact zone has been detected by means of a trial and error procedure, is then solved
in an increment of load. The singular character of the stresses at the end of the contact
zone is well known. This must obviously affect the degree of refinement of the discretizations
performed for the two bodies in contact in this zone, independently of the non-conforming
character of the approach employed here.

Two different discretizations, shown in Fig. 12, have been employed along the contact
zone, both being identical along the rest of the boundaries. The coordinates of the nodes
of the two discretizations are, to be specific, indicated in Table 1. Note the strong non-
conforming character of the two discretizations close to the corner, which is the most
delicate part of the problem, due to the above mentioned singular character of the stresses.
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Fig. 11. Compression of a rectangular punch, geometry and properties.
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Table 1. Coordinates x (mm) of the nodes of the contact zone for the two discretizations employed

17 elements 0 12 18 24 28 32 40 45 47.5 48.75 49.375 49.6875 49.84375 49.921875 49.9609375
49.98046875 49.990234375 SO
11 elements 0 15 25 30 35 41 45.5 47.75 48.875 49.4375 49.7188 50
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Fig. 13. Contact pressure in the punch in the frictionless case.

The punch has played the role of body A and the foundation the role of body B in all
cases, the results being presented with the same notation as in the former example. Figures
13 and 14 present contact stresses that appear along the contact zone for the frictionless
case and for a friction coefficient y = 0.2, respectively.

In the detail that appears in Fig. 13 can be clearly observed the presence of a jump at
the element closest to the corner, in the case denoted 11-17, motivated by the presence of
a singularity at the corner. This jump is due to the inability of the linear elements used to
reproduce the presence of a singular field and in fact it also appears, in the corresponding
position, for the case of conforming discretization, denoted by 17-17, and for the non-
conforming 17-11 case. However, the most apparent jumps in the case denoted 17-11
appear several nodes from the corner. These jumps arise because the displacements of the
foundation (body B), which has fewer nodes in the contact zone, force the nodes of the
punch (body A) to occupy positions different to those they naturally ought to occupy.

Note that all these facts can be observed in the case with friction, Fig. 14, where some
of them can be seen even more clearly.

Thus, the results show the same tendencies as in the former example : when modelling
more finely the body that controls the displacements the results are as satisfactory as with
conforming discretizations, whereas when modelling with greater refinement the body that
controls the stresses some jumps may appear. [t must be pointed out that this general rule
is applicable even in a case, like the one analysed here with presence of singularities, where
the natural tendency would be to put more elements in the body that controls the stresses.
In any case, if the difference in the discretizations is not too great, as is the case far from
the corner, the solution is very similar to that obtained with the conforming discretization.

6.3. Compression of a cylinder
The complete problem and the one which will be analysed here, due to its symmetry,
are shown, together with the properties of the cylinder and the foundation, in Fig. 15. The
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Fig. 14. Normal and tangential stresses in the punch with friction, u = 0.2.
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Fig. 15. Compression of a cylinder, geometry and properties.

nature of the problem makes this problem belong to the advancing contact problem class,
the size of the contact zone increasing progressively as the amount of load increases. The
problem must necessarily be solved incrementally.

Discretizations with 11, 12 and 13 elements uniformly distributed along the contact
zone, which estimated according to Hertz theory has a size of approximately s, = 4 mm,
have been used. In all cases analysed the cylinder has played the role of body 4 and the
foundation the role of body B. The notation used to denote the different cases is similar to
that used in the former cases.

The results obtained for the problem without friction are compared with the analytical
solution obtained by Hertz, Fig. 16, a very satisfactory agreement among all the com-
binations of discretizations being observed, although it could be argued that in this case
the degree of non-conformity of the two discretizations is not too great.
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The results corresponding to the same case with a friction coefficient y = 0.005 are
shown in Fig. 17. In order to have a clear idea of the benefit of the weak application, results
obtained with a node-to-point scheme, Blazquez ez al. (1997), have also been presented.

The weak approach with more elements representing the body that controls dis-
placements (12-13) produces almost the same results as the conforming case taken as
reference. As usual, the results are slightly poorer when more elements are used for the
body controlling stresses (12—11). It might be argued that these excellent results for the case
where the body that controls the displacements is more finely represented could be due to
the apparently low degree of non-conformity between the discretizations (12-13), but the
results became clearly much poorer when a node-to-point contact scheme was used, with
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Fig. 18. Evolution of the stresses with the load for conforming and non-conforming discretizations,
with a friction coefficient 4 = 0.005.

the same influence of the relative discretizations of the bodies controlling displacements
and stresses. In Blazquez et al. (1997) it was shown how discretizations similar to this, using
other node-to-point contact schemes, originate very serious jumps in the stresses, which
focuses the real reason for the results obtained here on the manner of applying contact
conditions.

The consistency of the procedure can be appreciated in the results shown in Fig. 18,
where the evolution of the contact stresses with the load is shown for more refined con-
forming and non-conforming discretizations. No significant jumps appear.

7. CONCLUSIONS

A new approach in the application of the contact conditions for the case of non-
conforming discretizations with boundary elements of the surfaces involved in the contact
has been presented. Previous formulations satisfied equilibrium and compatibility locally,
identifying values of displacements and tractions at nodes of one of the bodies with the
corresponding contacting point of the other body. In the new approach, compatibility of
displacements and equilibrium of tractions are applied globally by means of variational
principles, the Principles of Virtual Displacements and Virtual Forces.

The aim of the development of a new approach has been to eliminate the jumps
(oscillations) in the tractions that the authors had detected as possibly appearing, using
any of the variants of a general node-to-point approach. The new approach, which relaxes
locaily equilibrium and compatibility requirements, is not as rigid as the former one in the
application of the contact conditions and no jumps have been detected in the problems
tested.

What is still necessary, as a general rule, is to discretize more finely (in fact at least no
less finely), the body that controls the displacements. This restriction is inherent in a non-
conforming discretization approach and, as has already been studied by the authors in
previous papers Paris et al. (1995) and Blazquez er al. (1997), it tends to avoid a poor
definition of the displacements at the nodes of the body that controls the stresses, sub-
sequently forcing those nodes to occupy positions different from those they would tend to
occupy and thus slightly altering the value of the traction at this point. Due to the fact that
the assignment of bodies 4 or B to the two bodies involved in a contact zone is arbitrary,
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the former restriction does not represent any complication or limitation. The discretizations
can be performed freely and the program will assign the role of body B to the one that has
been discretized with more elements.

The new approach is obviously more complicated from a computational point of view,
both as regards programming and computation time. However, the results obtained with
three classical problems belonging to the receding, conforming and advancing contact
categories, with absence of nonsense jumps in the contact stresses, support the robustness
of the procedure and its use in a non-conforming discretization approach.

It is important to note that the approach presented is valid with no modifications for
small, moderate and large displacements whose only difference in treatment, assuming
linear behaviour of the materials involved in the contact problem, is the necessity or
otherwise of updating the geometry after the application of the increments of load.

Although the approach presented in this paper has been related to contact problems,
it would also be immediately applicable to substructuring techniques, allowing independent
discretizations (of the interface) to be used for each substructure.
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